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a = correlation length [m]
C = finite element capacitance matrix
Cj = local capacitance matrix corres-

ponding to element j
E = mean value operator
f(p) = probability density function of p
f = finite element thermal load vector
fj = local thermal load vector corres-

ponding to element j
h = surface heat transfer coefficient

[W/m2°C]
h = discretized surface heat transfer

coefficient field vector
k = k0gk(T) thermal conductivity

[W/m°C]
k0 = thermal conductivity at reference 

temperature [W/m°C]
k0 = discretized thermal conductivity

field vector
K = finite element stiffness matrix 
Kj = local stiffness matrix corres-

ponding to element j 
L = length of slab [m]
nBC = dimension of h and T∞
nQ = dimension of Q
nel = number of finite elements
nnod = number of nodes 
nTP = dimension of k0, ρc0 and Q
p = arbitrary parameter 
Q = heat generation rate [W/m3]

Q = discretized heat generation field
vector

S = boundary surface
t = time [s]
T = temperature [°C] or [K]
T0 = initial temperature [°C]
T0 = discretized initial temperature

field vector
T∞ = ambient temperature [°C]
T∞ = discretized ambient temperature 

field vector
u = nodal temperature vector
V = volume
Va,b = covariance matrix of random

vectors a and b
x = position vector
x,y = spatial co-ordinates
β = temperature coefficient of k and ρc
∆t = time step [s]
λ = eigenvalue
φj = shape function vector corres-

ponding to element j
ψ = matrix of eigenvectors
ρc = ρc0gρ c : volumetric heat

capacity [J/m3°C]
ρc0 = volumetric heat capacity at

reference temperature [J/m3°C]
ρc0 = discretized volumetric heat

capacity field vector
σ = standard deviation

Note: The symbols defined above are subject to alteration on occasion

Nomenclature
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Introduction
The numerical analysis of conduction heat transfer by various methods such as
the finite element and finite difference method is well established. For this
purpose, it is usually assumed that the parameters relevant to the heat transfer
process are accurately known. In reality many of these parameters may vary in
a random way as a function of the spatial co-ordinates and can only be described
appropriately by means of random fields. As a consequence, the temperature in
the conductive medium at arbitrary space-time co-ordinates is also random and
can only be specified meaningfully by means of statistical characteristics such
as its mean value, variance and probability density function.

A straightforward statistical approach to the solution of heat conduction
problems with random field parameters is the Monte Carlo method. In this
method a sample of the random parameters is generated on the computer and
the corresponding heat transfer problem is numerically solved. This procedure
is repeated several times and, finally, the mean values and variances but also
higher order moments can be estimated using common statistical techniques,
and tests of hypothesis and significance can be performed. While the Monte
Carlo method yields a rather complete picture of the stochastic properties of the
temperature field, the large number of runs (typically > 1,000) necessary to
obtain results with an acceptable accuracy and the considerable amount of
corresponding computer time limits its applicability.

Alternatively, a probabilistic perturbation method may be used. This method
is based on the computation of the propagation of an infinitesimal perturbation
of the (stochastic) parameters during the process. Mean values and
(co)variances of the process variables can then easily be evaluated. This method
is used widely for stochastic elliptic and hyperbolic problems in structural
analysis[1-4]. Nicolaï and De Baerdemaeker[5,6] applied the perturbation
method to parabolic problems with random variable thermophysical
parameters. Sluzalec[7] applied the perturbation algorithm outlined in Liu et
al.[4] to linear parabolic problems with random field parameters. An essentially
identical algorithm was applied by Fadale and Emery[8] to some test cases. In
both cases the algorithm is very general and does not cope with non-linearities,
random initial conditions and possible correlations between the random
parameters. In this article the algorithm of Sluzalec[7] and Fadale and Emery[8]
will be modified and extended to include these features.

Finite element analysis of non-linear heat conduction
It is assumed that the heat transfer is governed by the Fourier equation

where

• T : temperature [°C]

• t : time[s]

(1)
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• k : thermal conductivity (W/m°C]

• ρc : volumetric heat capacity [J/m3°C]

• Q : heat generation per unit volume [W/m3]

Equation (1) is defined over some spatial domain V. The thermophysical
properties k and ρc may be a function of the temperature and can be written as:

(2)

(3)

where k0 and ρc0 are the values of k and ρc, respectively, at a known reference
temperature T0; the functions gk(T) and gρc(T) describe the temperature
dependence of k and ρc, respectively, and are equal to unity at the reference
temperature.

The initial condition at each position x is defined as

(4)

where T0(x) is a known function. It is further assumed that at the boundary
surface S of the heated object convection boundary conditions may occur

(5)

here

• T∞ : ambient temperature [°C]

• h : surface heat transfer coefficient [W/m2°C]

• n : outward normal to the surface

Non-linear boundary conditions such as radiation are not considered. Further,
the surface heat transfer coefficient is assumed to be independent of the
temperature.

Equation (1) subject to (4) and (5) can be solved conveniently by means of the
finite element method. For this purpose the continuum is sub-divided in
elements of variable size and shape which are interconnected in a finite number
nnod of nodal points. In every element the unknown temperature is approxi-
mated by a low order interpolating polynomial

(6)

where uj(t) is the approximate temperature in element j, uj(t) is the vector
containing the nodal temperatures in element j, and φj is the vector of shape
functions corresponding to element j. Applying the Galerkin method to
equation (1) subject to (4) and (5) then yields the following non-linear differential
system[9]
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(7)

with u = [u1 u2 … unnod
]T the overall nodal temperature vector, C the capaci-

tance matrix and K the stiffness matrix, both nnod × nnod matrices, and f a nnod
× 1 vector. The system (7) can be solved by means of the finite difference
method. For the construction of the global finite element matrices C, K and f, it
is most convenient from the programming point of view to first assemble the
contributions of each element (the “element matrices” Cj, Kj and fj)

(8)

(9)

(10)

with

and nel the number of finite elements. The element matrices are then
incorporated in the global matrices.

Random field parameters
Parameters which can vary in a random way as a function of the spatial co-

ordinates are described most appropriately by means of random fields. It has
been assumed further that the random fields are homogeneous, which means
that their probabilistic characteristics do not change as a function of the spatial
co-ordinates. A homogeneous random field p(x) is fully characterized by means
of its probability density function f(p, x). In reality often only the mean value
–p(x) and its covariance function Vp,p (∆x) are known

(11)

(12)

where E denotes the mean value operator. The (univariate) random field concept
can easily be extended to bivariate random fields.

For further analysis the following four classes of random heat transfer
parameters are distinguished:
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(1) thermophysical properties k and ρc;
(2) process parameters h and T∞;
(3) heat generation rate Q;
(4) initial condition T0.

The classes are assumed to be mutually uncorrelated. However, quantities
inside a class may be correlated. These assumptions are based on physical
considerations. For example, k and pc may be correlated since they both depend
on the chemical composition and physical structure of the conductive medium.
On the other hand, there is no a priori reason why the thermophysical
properties and the boundary condition parameters h and T∞ should be
correlated. 

If k and ρc are temperature dependent according to equation (2) and (3), it is
assumed that k0 and ρc0 are random, while gk(T) and gρc(T) are deterministic
functions.

It is assumed further that all quantities are of the random field type, with the
random variable problem as a special subcase. Q and T0 are homogeneous uni-
variate Gaussian random fields with means 

—
Q and 

—
T0, and covariance functions

VQ(∆x) and VT 0(∆x), respectively. [k0 ρc0]T and [hT∞]T are homogeneous bi-
variate Gaussian random fields with mean [

—
k0——

ρc0]T and [
–
h

—
T∞]T, and covariance

function VTP(∆x) and VBC(∆x), respectively, where TP and BC stand for
“thermophysical properties” and “boundary condition”. It is assumed that the
probability density functions corresponding to parameters which for physical
reasons can only take on values of a limited range (thermophysical properties,
surface heat transfer coefficient, ambient temperature and initial temperature)
are truncated properly.

For computational purposes the random fields are spatially discretized
resulting in random vectors of appropriate dimension. Several discretization
methods have been suggested in the literature[4,10,11]. In this article k0, ρc0,
and Q are discretized in the midpoints of the finite elements; h and T∞ in the
midpoints of the element edges which are exposed to a convection boundary
condition; and T0 in the nodes of the finite element grid. The dimensions of the
corresponding random vectors are tabulated in Table I.

Parameter Random vector Dimension

k0 k0 nTP
ρc0 ρc0 nTP
h h nBC
T∞ T∞ nBC
Q Q nQ
T0 T0 nnod

Table I.
Discretization of 

random field parameters



HFF
7,5

530

The (cross) covariance matrix of two random vectors is denoted as

The entry of Vk0,ρc0 with row index i and column index j, which represents the
covariance between entry with index i of the first vector and entry with index j
of the second vector, is denoted by Vk0

i, ρc0
j
.

Perturbation algorithm
The starting point of the analysis is the finite element formulation of the Fourier
equation

(13)

in which the dependency of the system matrices and vectors on the (spatially
discretized) random parameters is shown. The matrices and vectors in the
system (13) can be expanded into a first order Taylor series:

(14)

(15)

(16)

(17)

where

(18)
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(19)

(20)

and –u is the solution of the deterministic (non-linear) heat transfer problem

(21)

with the initial condition

(22)

Note that an expression like 
∂C 
∂ρc0

i
denotes the partial derivative of C with

respect to the ith component of the random vector ρc0.
The derivatives of the matrices in the Taylor expansion are to be evaluated

using the mean parameters, e.g.

After substitution of (14)-(17) in equation (13) and combining corresponding
terms, the following system is obtained

(23)

(24)

(25)

(26)

(27)

(28)

with

(29)
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(30)

Obviously, for linear problems

(31)

(32)

so that

Applying the mean value operator on equation (16) yields

This means that a first order approximation of the mean temperature vector
can be found by solving the original (deterministic) heat transfer problem using
the mean values of the parameters. The covariance matrix Vu,u at an arbitrary
time t can be computed from

(33)

At t = 0,

(34)

(35)

(36)
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so that, after substitution of (34)-(36) in (33),

(37)

Since

equation (37) is satisfied if

(38)

If only the variances σ2
ui

, i = 1, nnod, which are the diagonal entries of Vu,u, are
needed, equation (33) reduces to

(39)

If the random fields are discretized by an appropriate discretization algorithm,
the covariance matrices are positive definite so that the quadratic forms in (39)
are all positive. This means that each uncertain parameter has a positive
contribution to the temperature variance. 

The global algorithm can then be summarized as follows.

Step 1. Compute –u from equation (21) with initial condition (22);

Step 2. Solve equations (23)-(28) for the sensitivity vectors ∂u/∂ρc0
i, ∂u/∂k0

i,
∂u/∂hi, … with corresponding initial conditions (34)-(36) and (38);

Step 3. Compute Vuu (t) from equation (33) at the required time instances.

Equation (21) and equations (23)-(28) are linear and can be solved by means of
finite differences. If the problem is linear then

—
K = 

∇
K. As a consequence, if an

implicit finite difference method is applied the computer time can be reduced.
For example, in the implicit Euler method a matrix

—
K + 

—
C/∆t appears which

must be triangularized. This triangularization must be accomplished only
once, namely for the computation of –u according to equation (21). For non-
linear problems 

—
K ≠

∇
K and the matrix 

∇
K + 

—
C/∆t is time-varying. However, since



HFF
7,5

534

the latter matrix arises in the implicit Euler solution of equations (23)-(28) it
must be triangularized only once each time step. Also, 

∇
K is, in general, non-

symmetric. Consequently, the CPU time needed for the triangularization
doubles in comparison to the linear case where 

∇
K is equal to 

—
K and, hence,

symmetric. 
For steady state problems, the differential system (23)-(28) reduces to the

following algebraic system

where –u is the solution of the following steady state heat transfer problem

(40)

The terms involving ρc and T0 disappear correspondingly from equation
(33). 

A special case: random variable parameters
If a random quantity is of the random variable type, the algorithms presented
above can be simplified. For example, for a transient linear heat transfer
problem with random variable thermal conductivity, equations (23), (24) and
(33) become

(41)

(42)
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Derivatives of C, K and f with respect to random parameters 
The derivatives of C, K and f with respect to the random parameters can be
computed by differentiation of the element matrices and subsequent
incorporation in the global derivative matrices. The following expressions are
easily derived from equations (8)-(10), using (2) and (3):

These particularly simple expressions are a consequence of the midpoint
discretization method. Clearly the derivative matrices are very sparse: only the
entries corresponding to element j are non-zero. This result can be exploited in
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the computation of the matrix multiplications in the right-hand side of the
perturbation system and variance propagation equations. 

The derivatives of K and C with respect to the temperature vector u can be
assembled using the following expressions:

Reduction of the dimension of the discretized random fields
The CPU time required in the perturbation algorithm for the computation of the
covariance matrix according to equation (33) is proportional to the square of the
dimensions of the random vectors resulting from the discretization of the
random field parameters. If these dimensions are large, the total CPU time will
be determined by the time spent in evaluating these equations. It therefore
seems to be worthwhile to reduce the dimension of these random vectors as
suggested by Liu et al.[4].

Consider a transient linear heat transfer problem with random field
thermophysical parameters k and ρc. Assume that k and ρc are discretized and
that the covariance function of k and ρc is given by

with RTP(∆x) the correlation function which is equal to unity for ∆x = 0. A
transformation

is defined such that the correlation matrix 
~
RTP of the transformed variables is a

diagonal matrix and that ψ is orthogonal

It is easy to show that this involves the solution of the eigenproblem
(44)

(43)
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where 
~
RTP is the diagonal matrix containing the eigenvalues, and ψ is the

matrix of normalized eigenvectors. Note that the eigendecomposition (44) exists
if RTP is positive-definite. This is the case if a suitable spatial discretization
procedure is applied[12]. The (co)variances of the transformed variables 

~
ki and

~ρci are equal to

where λ i, i = 1, … , nTP are the eigenvalues of RTP, and, hence, the diagonal
entries of 

~
RTP. Further, from (44) it follows that

(45)

with ψi the ith eigenvector of RTP. Now, suppose that the eigenvalues λ i are
ordered from large to small, it can be expected that a reasonable approximation
of RTP can be obtained by evaluating only the first few, say N < nTP, terms in
the sum in equation (45). The perturbation algorithm is now applied using the
transformed variables. This yields the following system

The Jacobian matrices with respect to the transformed variables are a linear
combination of those of the original variables. For example, from (44) it follows
that

Applying the chain rule yields
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The covariance matrix is then computed from

Numerical examples
In order to compare the first order perturbation method with the Monte Carlo in
terms of accuracy and required computer time, some test problems were
investigated. In all cases it has been assumed that all (univariate) random fields
p are homogeneous with mean 

–
p and exponential covariance function

(46)

(47)

with σ2
p the variance of the field. The parameter a is called the correlation length

and gives an indication of the smoothness of the random field. The bivariate
homogeneous random fields p =[—p1

—p2]T are also homogeneous with mean 
–p = [—p1

—p2]T and covariance function

(48)

where R(∆x) is defined by equation (47).
An existing finite element code for non-linear heat conduction analysis

Dot[13] was modified. The element midpoints, required for the discretization of
the random fields, were computed by Gauss-Legendre quadrature.

In the program, the eigendecomposition of the correlation matrices as
described above is computed using Nag routine F02ABF.

For non-linear problems, 
∇
K is not equal to 

—
K and unsymmetric in general. It

has, however, the same sparse skyline structure as 
—
K. Therefore only the non-

zero entries are kept in a vector and two additional (integer) vectors contain the
row and column index of each entry. Each time step 

∇
K must be triangularized,

but within each time step this must be done only once. The triangularization
and the back-substitution are carried out by Nag routines F01BRF and F01BSF.

For the Monte Carlo analysis, the random fields were discretized as described
above. Samples of the resulting random vectors were generated by means of
Nag routines G05EAF and G05EZF. 

All algorithms were programmed and executed on a HP-720 workstation.



Finite element
perturbation

analysis

539

Example 1. Parallel sided slab with heat generation
The first test problem consisted of a parallel sided metal slab with length L
(L = 10cm) with uniform internal heat generation Q (106W/m3) and random
field thermophysical properties with the following characteristics: 

–
k =100

W/m°C; ρc =7·106 J/m3°C; σk0/
—
k0 = σρc

0/ 
—

ρc0 = 0.1; σk0, ρc
0/σk0σρc0 = 0.5; a = 5 cm.

Further, gk(T) = gρc (T) ≡ 1. The slab is initially at a temperature T0 = 0°C. The
boundary at x = +L is kept at a fixed temperature T∞ (0°C) by setting h to an
arbitrary large value. The boundary at x = 0cm is adiabatic.

For the finite element analysis the region [0,L] was subdivided in ten identical
quadrilateral elements with four nodes per element (only two-dimensional
planar and axisymmetric elements are provided in the DOT finite element code).
∆t was set at 10s for the transient analysis. Preliminary deterministic
simulations showed that the global error of the finite element approximation
with respect to the analytical solution was of the order 0.1°C.

In Figure 1 the mean temperature is shown for three different positions in the
slab. It is clear that no visual distinction can be made between the mean
temperatures computed by means of the different methods. The temperature
variance is shown in Figure 2. It can be observed that the results of the (first
order) perturbation analysis agree very well with those of both Monte Carlo
analyses. The CPU time required for the perturbation algorithm (3s) was
considerably below that required for the Monte Carlo analysis (24.4s for 100
simulation runs and 242s for 1,000 runs).

In Figure 3 the influence of the number of considered eigenvalues on the
accuracy of the calculated variance at x = 0cm and t = 2,000s is investigated for
different values of a/L. For this purpose the calculations were done using a grid
of 50 elements. In all cases, only a few eigenvalues are required. This has

Figure 1.
Mean transient

temperature in a slab
with random field

thermophysical
properties – first order
perturbation; *: Monte

Carlo (nMC = 100); +:
Monte Carlo 

(nMC = 1,000)
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important consequences on the computational effort: the CPU time required to
solve the problem considering only one eigenvalue is equal to 10s, where the
time required without eigenvalue decomposition is equal to 555s. Interestingly,
the CPU time with the eigenvalue decomposition but including all eigenvalues
is equal to 215s, and thus less than the CPU-time without decomposition. This
conclusion depends of course on the dimension of the eigenvalue decomposi-
tion, which scales poorly in terms of CPU time.

In order to evaluate the performance of the perturbation algorithm for non-
linear stochastic heat transfer (temperature-dependent thermophysical

Figure 2.
Variance of the transient
temperature in a slab
with random field
thermophysical
properties – first order
perturbation; *: Monte
Carlo (nMC = 100); +:
Monte Carlo 
(nMC = 1,000)

Figure 3.
Influence of the number
of eigenvalues in the
perturbation algorithm
on the accuracy of the
variance for x = 0cm
and t = 2,000s. ® : a/L =
5; n : a/L = 0.5; ∆ : 
a/L = 0.05 
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properties), the following temperature dependence of the thermal conductivity
and the volumetric heat capacity has been assumed

(49)

(50)

where β is a constant. Further, it has been assumed that k0 and ρc0 are Gaussian
random variables with the same characteristics as above.

In Figures 4 and 5 the results of the different algorithms are shown. For the
computations, k0 = 100W/m°C, ρc = 7 103 J/m3°C and β = 0.01.

Figure 4.
Mean transient

temperature in a slab
with random variable

non-linear
thermophysical

properties –
perturbation; *: Monte

Carlo (nMC = 100); +:
Monte Carlo 

(nMC = 1,000)

Figure 5.
Variance of the transient

temperature in a slab
with random variable

non-linear
thermophysical

properties –
perturbation; *: Monte

Carlo (nMC = 100); +:
Monte Carlo 

(nMC = 1,000)
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From the graphs it is clear that the first order perturbation algorithm gives
slightly underestimated results. It is, however, still much more accurate than
the Monte Carlo method with 100 simulation runs. The difference in CPU time
is considerable: 8.7s for the perturbation method, 90.5s for the Monte Carlo
method with nMC = 100, and 944s for the Monte Carlo method with 
nMC = 1,000. 

Example 2. Beam with non-square cross-section and internal heat generation
The second test problem consisted of a beam of infinite length with non-square
cross-section (Figure 6). A convection boundary condition with 

–
h = 100W/m2°C,

T∞ = 0°C, σh = 0.1
–
h, σT∞ = 10°C, and σh,T∞ = 0.5σhσT∞ is applied to all four

sides. The statistical characteristics of the thermophysical parameters are equal
to 

–
k =1.0 W/m°C, ρc =1.0 · 106 J/m3°C, σk = 0.1

–
k, σρc = 0.1—ρc, σk,ρc = 0.5σkσρc.

The beam is initially at a temperature 
—
T0 = 0°C with σT0 = 10°C. Heat is

generated at a rate 
—
Q = 1 · 105 W/m3°C, with σQ = 0.1

—
Q. For all random fields a

is set equal to 10cm. The finite element grid consisted of 100 quadrilateral
elements with four nodes/elements, yielding a total of 121 nodes. The time step
was equal to 60s. 

In Figures 7 and 8 the mean and the variance of the temperature at position (x,
y) = (3cm, 5cm) is shown. Initially the initial temperature fluctuations decrease
because of the heat diffusion, but after a while the temperature variance
increases again. There is a good correspondence between the results obtained
with the different methods. Observe that the results obtained by considering
only one eigenvalue agree very well with those obtained by considering all
eigenvalues. The CPU time was equal to 648s for the perturbation method
without eigenvalue decomposition. For the perturbation method with
eigenvalue decomposition the CPU time was equal to 96 and 353s, depending on
whether only one or all eigenvalues were considered. The Monte Carlo analysis
required 116 (nMC = 100) and 1126s (nMC =1,000). The perturbation method is

Figure 6.
Finite element grid of a
beam with non-square
cross-section
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hence particularly advantageous when the eigenvalue decomposition of the
correlation matrices is accomplished. 

Conclusions
In this article a first order perturbation algorithm has been developed for the
analysis of non-linear conduction heat transfer under uncertain conditions. The
algorithm is based on the finite element formulation of the heat conduction
equation, and requires the spatial discretization of the random parameters.

Figure 7.
Mean temperature at

the position (x, y) =
(3cm, 5cm) of the beam.

– perturbation; o:
perturbation with one

eigenvalue; •:
perturbation with all
eigenvalues; *: Monte
Carlo (nMC = 100); +:

Monte Carlo 
(nMC = 1,000)

Figure 8.
Temperature variance
at the position  (x, y) =

(3cm, 5cm) of the beam.
– perturbation; o:

perturbation with one
eigenvalue; •:

perturbation with all
eigenvalues; *: Monte

Carlo (nMC = 100; +:
Monte Carlo 

(nMC = 1,000)



HFF
7,5

544

In comparison to the perturbation algorithm described by Shuzalec[7] and
Fadale and Emery[8], several important features have been added here such as
non-linear random field thermophysical parameters, a random field initial
condition, and correlated thermophysical and boundary condition parameters.
The algorithm is particularly simple to implement, since for each random
variable parameter a differential equation of the same type as the the one
obtained by applying the finite element method to the deterministic problem
must be solved. The perturbation algorithm is a computationally attractive
alternative to the Monte Carlo method. 
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